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Abstract 

Strength ,  F r a c t u r e  Toughness ,  Fat igue,  a n d  Standard iza t ion  Issues  of  Free-Standing 
Plasma-Sprayed T h e r m a l  B a r r i e r  Coat ings 

Sung R. Choi, Dongming Zhu, and Robert A. Miller 
NASA Glenn Research Center, Cleveland, OH 44135 

Strength, fracture toughness and  fatigue behavior of free-standing thick thermal barrier coatings of plasma- 
sprayed Zr02-8wt% Y,O, were determined a t  ambient and  elevated temperatures in a n  attempt to establish 
a database for  design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in 
tension (uniaxial and trans-thickness), compression, and uniaxial and  biaxial flexure; fracture toughness was 
determined in various load conditions including mode I, mode 11, and mixed modes I and  11; fatigue o r  slow 
crack growth behavior was estimated in cyclic tension and  dynamic flexure loading. Effect of sintering was 
quantified through approaches using strength, fracture toughness and modulus (constitutive relations) 
measurements. Standardization issues on test methodology also was presented with a special regard to 
material’s unique constitutive relations. 
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I. Backgrounds 

Thermal Barrier coatings (TBCs), Zr0,-8 wt% Y,O, - 
important coating materials due to low thermal 
conductivity, high thermal expansivity, and unique 
microstructure 
Somewhat anisotropic nature of porosity, microcracks and 
splat structure - a challenge in routine mechanical testing 
and data interpretation 
Mechanical testing for TBCs performed to characterize 
strength, fracture toughness, fatigue, and deformation, and 
also to establish database 
Results of mechanical testing presented and discussed, and 
related issues discussed 
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11. Material Processing 

Spray direction 

ZrO,-8 wtoh Y,O, powder with an average particle size of 60 pm 
Plasma sprayed on a steel or graphite substrate 
SULZER-METCO ATC- 1 plasma coating system with a 6-axes industrial 
robot used 
Free standing TBC billets fabricated 
Test specimens machined from billets with appropriate configurations 
Typical billets: 

S.D Spray direction (S.D) 

1 to bedut ~~ ~ 

140 mm 
I 

I I I Test Specimen 

Unique Microstructure of TBCs 

I fracture surface I 

- 
Layered, porous, microcracked, 
and splat (platelet) structure 

I polished surface I 
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111. Strength Testing 

Type of tests 

Tvpes of Tes ting/Tes t Specimen s/Orien t a t ions 

Specimen geometry 

Spray  direction (S.D) 

I " Tes t  specimens 
I to  b e c u t  140 mm 

k 

Billet 

Uniaxial Trans-thickness 
tension tension 

Uniaxial 
compression 

4 

Uniaxial flexure Biaxial flexure 
(four-poin t) (ring-on-ring) 

.( indicates spray direction 

Test Matrix (strength) 

1 1 0 1  
I'niaxial tension 1 15mmx5mm* 

N I lo I 15 mm x 3 mm (t) 
Tension (diameter x thick.) 

P I ' O  I I'niasial 1Omm x 5mm* 
compression 

P I 30 I Ilniaxial flexure 3mm x 4mm x 25mm 
(four- point) (lOl20 mm spans] 

Biasial flexure 25mm x 3mm (t) P 
(ring-on-ring) (11122 mm rings] 

* indicates thc direction of fracture w.r.t plasma-spra), direction 
Test temperature: ambient ternpcr:iturc in  air. 

t I 

Uniaxial Trans-thickness Uniaxial 
tension tension compression 

i 

Uniaxial flexure Biaxial flexure 
(four-pt.) (ring-on-ring) 

4 indicates spray direction 

~~ 

NASA/TM-2003-2 125 16 



ExDerimental Results (strenpth) 

Type oftests 

Uniaxial tension 

Trans-thickness 
Tension 

Uniaxial 
compression 

No. of test Direction" Average \\'eibull 

strength modulus specimens 

valid (M Pa)# 

3 P IS(1) 

10 N I 1 ( 1 )  13 

10 P 300(77) I 

Uniaxial flexure 
(four-point) 

Biaxial flexure 
(ring-on-ring) 

10 P WJ) 12 

I t 4 

- 

Uniaxial Trans-thickness Uniaxial 
I tension tension compression , 

i 

A basic assumption in strength calculation: a continuum mechanics 
(isotropic and linear-elastic) 

Uniaxial flexure Biaxial flexure 
(four-pt.) (ring-on-ring) 

4 indicates spray direction 

= 30-40 MPa in flexure 

Choi, Zhu, and Miller ('98,'99,'00,'01) 
= 300 MPa in compression 

Strenet 

500 

100 

10 

Experimental Results (strength) 

h vs Type o f  Tests 

zrCJ+vt% Y,O, mcs 
(RT strengths) 

1 '  1 I 1 I 
I I 

Tension Trans-thick Uniaxial Biaxial Compression 
tension flex (4-pt) flex 

of= 10- 15 MPa in tension 
= 30-40 MPa in flexure -- = 300 MPa in compression 

Uniaxial Trans-thickness Uniaxia,l 
tension tension compress~on 

+ 
( -  I I  - 0  * 
Uniaxial flexure Biaxial flexure 

(four-pt) (ring*n-ring) 

4 indicates spray direction 

The numbers indicates the number of specimens tested valid 
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Experimental Results (strength) 

Wei bull Strength Distributions 

5 10 20 30 50 70 100 200 500 [MPa] 
I ]  , I 1 " I 

Trans-thic 

m=13 
- tension 

0 

/4 Compression ; Uniaxial Trans-thickness Uniaxia,l 
tension tension compression 

(-f=+ & 
Uniaxial flexure Biaxial flexure 

(rour-pt.) (ring-on-ring) 

4 indicates spray direction 1 2 3 4 5 6 7 

STRENGTH, In [a, I In (MPa) 

moduli of m=5-15, a typical range for many commercial 
or in-house (dense) monolithic ceramics 

Choi, Zhu, and Miller ('98,'9!3,'00,'01) 

Experimental Results (strength) 

Flexure Strength I." Vintage 

- 
2 'O 1 Flexure beam specimens ZrO2-8wt% Y,O, mcs 
E (3x4x~5mm; IOUO mm spans) (RT strengths) Y 

60 
& 
f 
L z 
W 40 
p! z 
2 20 
3 x w 
d o  

4 indicates spray direction 

'97 '98 '02 
VINATGE 

Flexure strength - less influence by vintage, indicating 
consistency in plasma-spray processing over the years L 

Choi, Zhu, and Miller ('98,'99,'03) The numbers i n d i c a t e s  the number of s p e c i m e n s  tested v a l i d  
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Strength vs. Effective Area - Size Effect 

- 

Strength-Effective Area (Weibull PIA model) 

No reasonable agreement in size effect between data and Weibull 1 
analysis (e.g., PIA); inconsistency in flaw populations (?) 

biaxial 
flexure uniaxial 

flexure 

60 - 
50 ~ 

- 

For typical dense 
I ceramics (m.10) 

W 
uniaxlal Q zi 

trans-thick 
7 -  tens ion 
6 -  
5 

10 100 1000 

EFFECTIVE AREA, A lmm’] 
cR 

Trans-thickness tension Uniaxial compression 

Fractography (strength) 

I Uniaxial tension I 

I Uniaxial flexure I 

I I I 

Fracture surface Top view of biaxial 
Flexure specimen 

I Biaxial flexure I 
I Very difficult to locate fracture origins and to analyze their nature 1 

Choi, Zhu, and Miller (‘98,’99,’00,’01) 
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Fractography - A Great Challenge 

Four-point flexure 

TBCs Dense Ceramics 
I 1 

Toughened Si,N, Zr0,-10 mol% Y,O, ZrO,-Owt% Y,O, 

Fracture mirror size (r,,,): 
TBCs - 3-40 mm (estimated) 
Dense ceramics - 50-500 pm -1 

Big mirror size & porous/microcracked nature of TBCs 
+ An enormous challenge in fractogrphy 

Choi, Zhu, and Miller (‘00,’Ol) 
Choi (’02); Choi and Narottam (’02) 

IV. Fracture Toughness Testing 
(Mode I, Mode I 1  and Mixed Mode) 

Types of Testing/Test SpecimendOrientations 

Spray direction (S.D) 

to be ;ut ~~ ~~ 

140 mm 
I 

I Billet I 
Klle & Mixed-Mode 

Test specimens 
(4mm x 3 mm x 25-50 mm) 
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Experimental (fracture toughness) 
(Mode I, Mode I 1  and Mixed Mode) 

Shear,V 

Types & Procedures 

*Sharp precracks generated 
- Single edge v-notched beam (SEVNB) method: 

Saw-notched -+ a sharp V-notch generated 
with a razor blade with diamond paste, a/W=0.5 

- AB= 10/5 (typical); s=O-3.6 mm in mixed mode 
- 10/20 or 20/40 mm spans in K,, 

*Test fixture configurations 

*Test temperatures 

*Number of test specimens: typically 24 
25 and 1316 O C  in air 

1 

b 

1; 
w 

25 

I S.D 

4 in K,, 1.15(0.07) 0.73(0.10) 

I 
4 

I 

1316 

A A 

9 in Kllc 

4 each 0.98(0.13) 0.65(0.04) 

Moment, M w 
I 

Results (frac t u re t oug hn es s) 
Mode I, Mode 11, and Mixed Mode (25 and 1316 O C )  

I ' I . I . # , # . I '  

ASYMMETRIC; TBC 

0 RTSPANS 1015 mm 
A UT: SPANS 1116 mm 

RT; SPANS W.5 mm 
0 1316'C; SPAN IO/S mm E 
0 a 

B A - 
z- 0.4 cpo 0 0 0  

0.2 1 - 

0 . O L '  " " ' ' e ' -  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

K, [MPam"*l 

Test I No. of I K,, I KEc I 
I Ternp("C) 1 I (MPadm) 1 (MPadm) 

used 

K,, > Kllc + K,,JK,,=0.64 & 0.66 (at 25 & 13 16 O C )  

K,, and KIIc at 25 OC 2 K,, and KIIc at 13 16 O C  

Elliptical relation between K, and K,, 
Test spans independent 

Choi, Zhu, and Miller ('03) 
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Experimental Results (fracture toughness) 

L c u 
-? 

Fracture Toughness vs. Temperature 

/ 

Average Kllc 

SEVNB method 

7 -7. 

A Prevoius study 1 0 Cunentstucty , I  
Average Klc 

w 
ez 

- 0  200 400 600 800 1000 1200 1400 1600 

TEMPERATURE I’Cl 

Temperature insensitive in K,, and KIIc 
0.65 MPadm 

Choi, Zhu, and Miller (‘98,’03) 

Experimental Results (fracture toughness) 

Fracture Toughness (RT) vs. Vintage 

SEVNB Zr02-8wt% Y,O, 
(3x4x45mm; 20/40 spans) 

Average =I MParn”‘ 

TBCs 

Lr, 22 
‘97 ‘98 ‘02 

0 

VINATGE 

Fracture toughness (K,J - less influence by vintage (similar to 
strength), indicating consistency in plasma-spray processing 
over the vears 

Choi, Zhu, and Miller (‘98,’03) 
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Experimental Results (fracture toughness) 

Direction of crack 

Fracture Toughness vs. Orientation 

Fracture Toughness Method 
K,, (MPadm) 

K, Ism” 
t 

Normal to plasma 
spray direction 

I S.D 

~~ ~ 

I .04M.05 DCB 
(Double Cantilever Beam) 

DCB specimens SEVNB specimens 

Parallel to plasma 
spray direction 1 .I 5M.07 SEVNB 

(regular method) 

- I No significant difference in K,c-- Little directionality effect on K,, 
Choi, Zhu, and Miller (‘98,’03) 

V. Fatigue/Slow Crack Growth 

Test S pecimens/Orien t a tion s 

1 S-D 

Spray direction (S.D) 1 3  mm r 
Flexure 

(3x4x25mm) 

Uniaxial tension 
(15mm x 5mm$) 

~ -1 to becut 
140 mm 

I Test specimens ] 
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Experimental (fatigue) 

20 

10 
9 
8 
7 

6 

5 

Test Types and Conditions 

Dynamic fatigue (ASTM C1425) 
800 "C in air; 3 test rates in flexure 
Tensile cyclic fatigue 
RT in air; sinusoidal; R= 0.1 ; e 10 Hz 

I I 

TBC CYCLIC FATIGUE 
TENSION/RT AIR(lOHz;R=O.l) 

.- 
- m l 0 0  - 

log (test rate) log (life) 

Tensile cyclic fatigue 

- 
c 
E 

Experimental Results (fatigue/SCG) 
Dynamic fatigue Tensile cyclic fatigue 

70 - 800% in flexure 
60 - 

STRESS RATE,& [ MPa/sl 

I I 
Slow crack growth (SCG) parameter n: 
n > 100 in both dynamic and tensile cyclic fatigue - 

Little susceptibility to SCG (fatigue) 
Choi, Zhu, and Miller ('98,'99,'01) 
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VI. Deformation (Stress-Strain) Behavior 

5 Specimen/Loading; Conditions Considered 

Uniaxial Trans-thickness Uniaxial 
tension tension compression 

Uniaxial flexure Biaxial flexure 
(four-pt.) (ring-on-ring) Test Setup (strain gaging) 

indicates spray direction 

Experimental Results (deformation) 

0 500 1000 1500 2000 2500 3001 

Strain b] 

Non-linearity with hysteresis but elastic 
-desirable in TBCs but difficulty in analysis 
Independent of the number of cycles and 
test rate (not-viscoelastic) 

Choi, Zhu, and Miller ('00,'Ol) 

NASNTM-2003-2 125 16 13 



Experimental Results (deformation) 

+ 

Fo 11 r- Poi n t F 1 ex u re 

~~ 

Different response of  strain in compression and tension 
A possible neutral axis shift due to different elastic modulus 
Flexure stress calculation - complex 

30 7 1 

+ 

25 

20 - z 
w 15 
(P 
0 
L;1 

10 

5 

The output wave form - distorted from the input triangular wave form 

C T I 

0 
0 200 4W 600 800 1000 1200 1400 

Strain lp] 

Experimental Results (deformation) 

Response of Output Wave Form to Cyclic Compression Loading 

i 2600 
21 00 

3 1600 
C .- 2 1100 

600 1 100 

L 0 20 40 60 t 

Time [SI 

0- 
Triangular 

cyclic loading 

Choi, Zhu, and Miller (’01) 
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Deformation (Stress-Strain) Behavior 

What is the cause of nonlinearity an( 

800 I 7/ 

hysteresis? 

E600 ~ 

P 
3 400 ~ 

200 1 
0 

0 500 lo00 1500 2000 2500 

Stran (mcrostram) 

Major reason - 'loosely' connected open structure due to pores and microcracks 
- Internal friction and densification 
- Still overall elastic behavior 

Eldridge. Morscher, and Choi ('02) 

Deformation (Stress-Strain) Behavior 

'Loosely-Connected Open' Structure - Poisson's Response 

1 wo 

400 

200 

-~~ 
0 500 1000 1500 2WO 2500 

Strain Ille] 

Exhibits no or little change 
in lateral strain: Poisson's 

Exhibits a linearly 
increasing lateral strain: 

I Open, loose structure I 

E2 

Poisson's ratio 
V = I m I  

I 
I Dense structure 
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Experimental Results (deformation) 

Sandstone - Another Example of Open Structure 

- 

1000 

900 1 
800 

700 1 
- 600 

p 500 ’ 400 
5. 

Open, loose structure: non-linearity with hysteresis 
-- Similaritv to TBCs 

0 200 400 600 800 1000 

microstrain 

~ 

1200 

sandstone 0 

VII. Sintering - A Changer of Structure 

Sintering conditions: 
Temperature/environment: 13 16 W a i r  
Annealing time: 0, 5, 20, 100, and 500 h 
Determine as a function of anneal time: 

- Elastic modulus 
- Fracture toughness (KJ  
- Flexure strength 
- Thermal conductivity 

~ 
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Experimental Results (sintering) 

0 500 1000 1500 2000 2500 3030 

Strain W 

Elastic Modulus 

0 mo 4w 600 800 

Strain b] 

1000 

900 

800 

700 

600 

500 

400 

300 

200 

100 

0 

U 

-I 

1 500 hr 1 0 0 h r  20 hr 5 hr As sprayed 

Compression 

0 500 1000 1500 2000 

Strain b] 

Slope (elastic modulus) increases with anneal time 
Linearity increases with anneal time 
Hysteresis decreases with anneal time 

+ 1 Implies a change of microstructure 
from 'loosely' connected to 'closely' connected 

Experimental Results (sintering) 

Well-Developed Poisson's (Lateral Strain) Response 

1wo 
900 

800 

I Open structure + More closely-connected structure I 

- Poisson's ratio 
l W O  V'I&&I 
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Experimental Results (sintering) 

Microstructure 

As-sprayed 100 h anncaled 

As-sprayed - Large amounts of microcracks and pores with a unique 

100 h annealing - Increased grain growth at longer annealing time 
platelet (splat) structure presented 

Experimental Results (sintering) 
Summary on elastic modulus, flexure strength, fracture 
to u g h n ess and therm a 1 con d u c t ivi t y 

'"c ,.* 
I 5  

Jo f 
I Iictrni:il rondiicti\it\ 

11 5 

0 5 I O  I1 211 25 311 31 
Timc hours - Properties change exponentially with sintering time Choi,Zhu,a"dMiller('03) 
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Standardization Issues 

The most hindering factor in establishing test methods for as- 
sprayed TBCs: non-linearity & hysteresis in the constitutive relations 
- Flexure testing (uniaxial and biaxial) maybe inappropriate due to 

- Poisson's ratio not well-defined 
- Impulse excitation technique maybe inappropriate 

difference in modulus between tension and compression 

Pure tension and compression testing - impose less problems 

Fracture toughness testing - maybe OK in view of low fracture loads 

Fractoaraphy - challenging 

Properties change with sinteringkervice conditions 
- requires to evaluate based on sinter/service conditions 

Summary 

Strength: 
tension: 10-15 MPa; flexure: 30-40 MPa; compression: 300 MPa 
Weibull modulus: 5-15 

Fatigue/Slow Crack Growth: 
SCG parameter n>100 

Fracture Toughness: 
K,,=1.0 MPadm up to 1316 "C 
K11,=0.7 MPadm up to 1316 "C 

nonlinear elasticity with hysteresis; 
imposes problems in continuum approach (test standards) 

Deformation: 

Sintering: 
significant influence - a changer of most properties! 
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